## 1 In this question take $g=10$.

The directions of the unit vectors $\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$ are east, north and vertically upwards.
Forces $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$ are given by $\mathbf{p}=\left(\begin{array}{r}-1 \\ -1 \\ 5\end{array}\right) \mathrm{N}, \mathbf{q}=\left(\begin{array}{r}-1 \\ -4 \\ 2\end{array}\right) \mathrm{N}$ and $\mathbf{r}=\left(\begin{array}{l}2 \\ 5 \\ 0\end{array}\right) \mathrm{N}$.
(i) Find which of $\mathbf{p}, \mathbf{q}$ and $\mathbf{r}$ has the greatest magnitude.
(ii) A particle has mass 0.4 kg . The forces acting on it are $\mathbf{p}, \mathbf{q}, \mathbf{r}$ and its weight.

Find the magnitude of the particle's acceleration and describe the direction of this acceleration.

2 The directions of the unit vectors $\mathbf{i}$ and $\mathbf{j}$ are east and north.
The velocity of a particle, $\mathbf{v} \mathrm{m} \mathrm{s}^{-1}$, at time $t \mathrm{~s}$ is given by

$$
\mathbf{v}=\left(16-t^{2}\right) \mathbf{i}+(31-8 t) \mathbf{j} .
$$

Find the time at which the particle is travelling on a bearing of $045^{\circ}$ and the speed of the particle at this time.

3 A football is kicked with speed $31 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of $20^{\circ}$ to the horizontal. It travels towards the goal which is 50 m away. The height of the crossbar of the goal is 2.44 m .
(i) Does the ball go over the top of the crossbar? Justify your answer.
(ii) State one assumption that you made in answering part (i).

4 The three forces $\left.\begin{array}{r}-1 \\ 14 \\ -8\end{array}\right) \mathrm{N},\left(\begin{array}{r}3 \\ -9 \\ 10\end{array}\right) \mathrm{N}$ and $\mathbf{F} \mathrm{N}$ act on a body of mass 4 kg in deep space and give it an acceleration of $\left.\begin{array}{r}-1 \\ 2 \\ 4\end{array}\right) \mathrm{m} \mathrm{s}^{-2}$.

$$
\text { (i) Calculate } \mathbf{F} \text {. }
$$

At one instant the velocity of the body is $\left.\begin{array}{r}-3 \\ 3 \\ 6\end{array}\right) \mathrm{m} \mathrm{s}^{-1}$.
(ii) Calculate the velocity and also the speed of the body 3 seconds later.

5 The position vector of a toy boat of mass 1.5 kg is modelled as $\mathbf{r}=(2+t) \mathbf{i}+\left(3 t-t^{2}\right) \mathbf{j}$ where lengths are in metres, $t$ is the time in seconds, $\mathbf{i}$ and $\mathbf{j}$ are horizontal, perpendicular unit vectors and the origin is O .
(i) Find the velocity of the boat when $t=4$.
(ii) Find the acceleration of the boat and the horizontal force acting on the boat.
(iii) Find the cartesian equation of the path of the boat referred to $x$ - and $y$-axes in the directions of $\mathbf{i}$ and $\mathbf{j}$, respectively, with origin $O$. You are not required to simplify your answer.

6 An object of mass 5 kg has a constant acceleration of $\binom{-1}{2} \mathrm{~m} \mathrm{~s}^{-2}$ for $0 \leqslant t \leqslant 4$, where $t$ is the time in seconds.
(i) Calculate the force acting on the object.

When $t=0$, the object has position vector $\binom{-2}{3} \mathrm{~m}$ and velocity $\binom{4}{5} \mathrm{~m} \mathrm{~s}^{-1}$.
(ii) Find the position vector of the object when $t=4$.

7 An object of mass 5 kg has a constant acceleration of $\binom{-1}{2} \mathrm{~ms}^{-2}$ for $0 \leqslant t \leqslant 4$, where $t$ is the time in seconds.
(i) Calculate the force acting on the object.

When $t=0$, the object has position vector $\binom{-2}{3} \mathrm{~m}$ and velocity $\binom{4}{5} \mathrm{~m} \mathrm{~s}^{-1}$.
(ii) Find the position vector of the object when $t=4$.

